

Resins and moulding compounds from pyrolytic lignin

Bio-based products for insulation foams and moulding compounds

Dr. Melike Bayram Hexion GmbH

Webinar

February 20th, 2020

Contents

1. Hexion's work with lignin

2. Development of insulation foams

3. Development of moulding compounds

4. Our motivation

Hexion's work with lignin

Lignin characterization

• Various analytical methods for the characterization of lignin were developed

Lignin screening tests

• Lignin from different feedstocks were screened

Resin screening tests

• Lignin was introduced in different resins of different applications

Resin application tests

• Application tests of the resins were performed in our labs

Hexion's work with lignin

Two different applications could be identified

foams for the insulation market

2nd application:

moulding compounds

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 723070.

Development of insulation foams

- Synthesis of the new resins
- Mixing of new resin with different additives
- Curing in a heated mold
- Getting a foam panel
- Tests like opened cell content, fire test, thermal conductivity λ , friability test etc.

Development of insulation foams

- Identified the most suitable lignin types (feedstocks) for insulation foams
- Best lignin in ranking leads to foams with good properties
- Lower ranked lignins lead to foams with poorer properties
- Different substitution grades were tried
- Lignin-based resins and foams are darker

Development of insulation foams

Foam properties, 10 % substitution

- Improved reaction and resistance to fire
- Improved compression strength
- Improved elastic modulus
- Other properties maintained at excellent values
- The cross section: even structure with no big holes

Proof of principle

- Scale-up from laboratory to pilot plant
- Resin and foam passed the tests

Development of moulding compounds

- Possible applications: e.g. automotive industry or household
- Tension rods were obtained from the lignin modified granulates
- Even without dye it has from the customer wanted dark color
- Excellent mechanical properties

Why to start?

The new bio-based resins offer potential for

- Lower dependence from fossil resources
- Novel characteristics and features by lignin introduction into the resin
- Improved properties
- Sustainability benefits
- Bio certification could possibly be obtained
- Offer customers new innovative products

Responsible Chemistry

Thank you for your attention

Further questions?

melike.bayram@hexion.com