

CONTENTS

INTRODUCTION Fractional condensation of biomass pyrolysis vapours

- CALIBRA project (CAscading LIgnin BioRefinery Approach)
 A pyrolysis-based approach to valorize lignin and lignin-rich biomass via fractional condensation of the pyrolysis vapours with integrated combustion of char for generating process heat
 - Project concept and aims
 - > Experimental approach
 - Results and discussion

> CONCLUSIONS

November 14, 2019

ECN > TNO innovation for life

CALIBRA PROJECT CONCEPT

PYROLYSIS-BASED CASCADING LIGNIN BIOREFINERY APPROACH

CALIBRA AIMS:

- to deploy a cost-effective, valorisation route for lignin residues via pyrolysis, fractionated product recovery and upgrading into valuable materials and energy,
- to experimentally verify the feasibility of lignin valorization towards additives for marine fuels and roofing bitumen and high-value phenolics,
- to establish and verify viable business cases,
- to prepare for scale-up.

- Lignin conditioning, pyrolysis in a (bubbling) fluidized bed pyrolyzer and product recovery by <u>intimately-coupled</u> fractional condensation of pyrolysis vapours & active char removal.
- Strategy: primary fractions to be used –as-such- for industrial applications and as feedstock for further upgrading (e.g. hydrotreatment, scCO2 extraction).

PYRENA pyrolysis reactor

- Riser EF pyrolysis BFB char combustor
- 3 kg/hr solid feed rate, 500°C, atm.
- ▶ 4 6 hours continuous operation
- Internal char combustion

EXPERIMENTS

- Fractional recovery pyrolysis vapours
 - Hot particle filter, heated tar knock-out pot
 - Heated ESP, cooled condensers
- Feedstocks
 - Cocoa shell granulates (20 25 wt% lignin)
 - Nut shell granulates (40 50 wt% lignin)
 - Biorefinery residue (DDB, 40 50 wt% lignin)

ECN > TNO innovation for life

FEEDSTOCK ANALYSIS RESULTS

	Extra	Extractives		Polysaccharides						Lignin			Ash Total			
Sample	Water	ethanol	Extractives	Arabinan	Xylan	Mannan	Galactan	Glucan	Rhamnan	C5-sugars	C6-sugars	AIL	ASL	Total li _ë nin	Ash	Sum
Cocoa shell granulates	26,4	7,1	33,5	0,9	1,5	1,5	1,2	15,3	0,3	2,4	18,2	23,6	2,1	25,7	9,5	89,4
Walnut shell granulates	3,5	1,1	4,7	0,2	21,1	0,0	0,8	15,6	0,3	21,3	16,8	42,2	2,8	45,0	0,3	88,0
Dry Distilled Biomass (DDB)	14,6	13,3	27,9	0,3	3,8	0,4	0,1	17,5	0,0	4,2	18,0	43,8	1,8	45,6	12,2	107,9

Lignin and lignin-rich biomass residues -

PYROLYSIS TEST RIG SET-UP

Recovered fractions

- 1. Fraction 1: Hot KO-pot >150
- 2. Fraction 2: ESP 100 120
- 3. Fraction 3: Cooler 4org
- 4. Fraction 4: Cooler 4 aq
- 5. Fraction 5: Cooler -25
- 6. Fraction 6: char and ash

ECN > TNO innovation for life

PYRENA PYROLYSIS PYPO SET-UP PYROLYSIS PRODUCT OBTAINMENT

FRACTIONATED PRODUCT RECOVERY @ 100°C PRIMARY PRODUCT FRACTIONS FROM WALNUT, COCOA AND DDB

- PYRENA integrated reactor system Fractionated recovery pyrolysis vapours Hot particle filter at 450°C, KO100 Heated tar knock-out pot ESP at 100°C **ESP100** Cooled condensers at 4°C KO4 KO-25 Intensive cooler at -25°C
 - Feedstocks
 - Walnut shell granulates
 - Cocoa shell granulates
 - Biorefinery residue (DDB)

Products (wt% on intake)	Walnut	Сосоа	DDB
Non-condensable gases	16,3	18,0	11,6
Total pyrolysis liquids	69,2	48,0	44,4
KO100	3,1	3,0	3,6
ESP100	18,4	9,7	16,5
KO4	46,4	32,5	22,4
KO-25	1,3	2,8	1,9
Pyrolysis char	10,5	13,5	15,0
Pyrolysis ash	0,5	8,7	11,4
Mass balance	96,5	88,2	82,4
an abler stop			

WALNUT GRANULATE PYROLYSIS OIL FRACTIONS

PYRENA PYROLYSIS FRACTIONS @ 100°C

COMPOSITION PRODUCT FRACTIONS FROM WALNUT, COCOA AND DDB

- > Fractional condensation of pyrolysis vapours:
 - > Partial separation water (in cooler4) and organics (cooler 100 and ESP)
 - > Partial separation HMW (in cooler 100 and ESP) and LMW (in ESP and cooler4).
- > Separation of water and low-boiling components in Cooler4 is a challenge.

COMPARISON CONDENSATION TEMPERATURES

PRIMARY PRODUCT FRACTIONS FROM WALNUT SHELL GRANULATES

Products (wt% on intake)	KO100 → ESP100 → KO4 → KO-25	KO150→ ESP120 → KO4 → KO-25			
Total pyrolysis liquids	69,2	63,0			
KO-oligomers	3,1	2,4			
ESP-oligomers ESP-monomers	13,9 4,5	10,2 2,7			
KO4-organics KO4-water	18,6 27,8	27,2 18,9			

- > Fractionated recovery of pyrolysis vapours at higher temperatures:
 - Lower overall liquid yield
 - Higher yield of smaller, monomeric compounds, probably due to mild cracking / devolatilization, leading to formation of more lower-boiling compounds that are recovered in the 4°C cooler.

ECN > TNO innovation for life

PARTNER SUPPORT & APPLICATION TRIALS

- OLAM Provision of cocoa-nut shell feedstocks
- ENERPY Scale-up pyrolysis process to 500 kg/h
- RUG Analysis and upgrading pyrolysis-oil samples, e.g. via HDO
- MTSA Design pilot-scale product recovery unit
- > FEYECON

Upgrading pyrolysis-oil samples via supercritical CO₂ extraction

> GOODFUELS

Verification of suitability pyrolysis-oil fractions for marine fuels

> SOPREMA

Verification of suitability of pyrolysis-oil fractions for roofing bitumen

CONCLUSIONS AND OUTLOOK

- Proof of concept of pyrolysis product recovery protocol via tests with various feedstocks. Recovery protocol based on relatively simple staged condensation in dedicated condensers.
- Challenges are optimization of the separation between heavy molecular weight material, lighter compounds and water via optimization and fine-tuning of the condensation temperatures and the design of the condensers.
- Direct fractional condensation of the complex hot vapour mixture from the pyrolysis of lignin or lignin-rich residues shows potential to recover separate fractions for applications such as biobitumen, marine biofuel, biochar and –possibly- bioaromatics (phenols) for higher value products.
- Scale-up of PYRENA for production runs with various lignin-rich feedstocks in order to prepare ample amounts of pyrolysis oil fractions for application trials at the partners (currently going on).

> THANK YOU FOR YOUR ATTENTION

.....

QUESTIONS?

TNO.NL/ECNPARTOFTNO

More info: Dr. Paul J. de Wild paul.dewild@tno.nl +31 6 10520901

ECN) TNO innovation for life

November 14, 2019

-