

GHENT UNIVERSITY

INTRODUCTION TO FAST PYROLYSIS: HOW DOES IT WORK AND

WHY IT SHOULD BE USED

Frederik Ronsse

Bio4Products Webinar: "From biomass to biobased products: #2 Developing a pyrolysis-based biorefinery"

RESEARCH GROUP - THERMOCHEMICAL CONVERSION OF BIOMASS

FAST PYROLYSIS: INTRODUCTION

Principle of fast pyrolysis

- The decomposition of biomass by heating in an oxygen-free or oxygen-limited environment
- Results in the production of three phases: gas, condensable vapours (leading up to bio-oil) and char (biochar)
- Gases and volatiles driven out of the biomass particles due to pressure built up in the particle
- Fast reactions, but in practice heat and mass transfer limitations occur affecting product distribution

limited environment eading up to bio-oil) and char

FAST PYROLYSIS: INTRODUCTION

Based on the process condition (temperature, heating rate and atmosphere) the following conversion processes can be distinguished:

Туре	Temp (°C)	Vapor residence time	Heat source	Char yield (wt.%)	Liquid yield (wt.%)	Gas yield (wt.%)	
Slow pyrolysis	300-500	5-30 min	external/ internal (oxygen addition)	35 %	30 %	35 %	
Intermediate pyrolysis	500	10-20 s	external	20 %	50 %	30 %	
Fast pyrolysis	500-600	1 s	external	12 %	75 %	13 %	
Torrefaction (partial pyrolysis)	< 300	minutes	external	80 %	5 %	15 %	
Gasification	> 750	10-20 s	internal (oxygen addition)	10 %	5 %	85 %	

FAST PYROLYSIS: REACTIONS

Principle of fast pyrolysis

- Simplified reaction scheme
- Discern between primary and secondary decomposition reactions
 - Primary reactions
 - The decomposition of polymers (cellulose, hemicellulose and lignin) within the solid cell wall
 - Depolymerisation, fragmentation and rearrangement reactions
 - Highly endothermic
 - Secondary reactions
 - Primary decomposition products are not stable and could further undergo transformation •
 - Cracking and condensation reactions
 - Increase the share of non-condensable gases and char at the expense of condensable organic \bullet compounds

- Homogeneous and heterogeneous reactions (catalyzed by char and mineral compounds •
- Exothermic reactions

FAST PYROLYSIS: REACTIONS AND REACTION CONDITIONS

GHENT UNIVERSITY

FAST PYROLYSIS: REACTIONS AND REACTION CONDITIONS

In fast pyrolysis, we want to maximize the yield in volatiles (minimize char/gas) Hence, suppressing secondary pyrolysis reactions:

- Temperature ~ 500°C
- Fast heating of particles (up to 100°C/s)
- So small particles are only suitable (max. 3 mm → need to grind biomass)
- Pressure = 1 atm.
- Short vapor residence time (<2 s)
- Short but sufficient biomass residence time (>10 s)

Effect of pyrolysis temperature on gas/liquid/char yield (fluidized bed, 3 mm pine wood as feedstock)

- Energy densification: Bio-oil, on a mass basis, has a HHV (higher heating value) equal to its parent biomass (18 ~ 20 MJ/kg for wood and wood bio-oil). However, density of bio-oil is ~ 1.1 kg/L – as such HHV on a volume basis can increase
- A liquid (bio-oil) is easier and more cheap to handle (transport, storage) than a bulk solid (parent biomass): local processing of biomass into liquid and central collection of liquid: cheaper logistics
- The bio-oil is virtually **free from mineral** compounds
- **Decoupling** of the conversion of biomass and the application of the bio-oil, both in time and space
- Flexibility in applications (see later)

Fast pyrolysis oil properties

- Combustible, HHV ~ 18 MJ/kg (half of that of petroleum)
- Rich in oxygenated organic compounds (same amount of O as the original biomass)
- 10 to 15 wt% water
- Highly corrosive, pH ~ 2
- Non distillable
- Unstable ('ageing' = polymerization bio-oil constituents during storage, deteriorating quality of the oil)
- Immiscible with hydrocarbons (unless use of surfanctans)
- Low cetane number (10 ~ 25)

Source: Piskorz, J., et al. In Pyrolysis Oils from Biomass, Soltes, E. J., Milne, T. A., Eds., ACS Symposium Series 376, 1988.	White Spruce	Poplar
Moisture content, wt%	7.0	3.3
Particle size, μm (max)	1000	590
Temperature	500	497
Apparent residence time	0.65	0.48
Product Yields, wt %, m.f.		
Water	11.6	12.2
Gas	7.8	10.8
Bio-char	12.2	7.7
Bio-oil	66.5	65.7
Bio-oil composition, wt %, m.f.		
Saccharides	3.3	2.4
Anhydrosugars	6.5	6.8
Aldehydes	10.1	14.0
Furans	0.35	
Ketones	1.24	1.4
Alcohols	2.0	1.2
Carboxylic acids	11.0	8.5
Water-Soluble – Total Above	34.5	34.3
Pyrolytic Lignin	20.6	16.2
Unaccounted fraction	11.4	15.2

Compared to heavy fuel oil

	bio-oil	heavy fuel oil	
vol. energy density	21	39	GJ/m ³
density	1220	963	kg/m ³
viscosity at 50 °C	13	351	mm ² /s
acidity	3	7	pН
water content	20	0.1	wt.%
ash content	0.02	0.03	wt.%
С	52	86	wt.%
н	7	10	wt.%
0	40	0.5	wt.%
N	0.1	0.6	wt.%
S	< 0.1	2	wt.%

Chemical composition (maximally reported concentrations)

0	Compound		wt.%	Compound		wt.%	
	Levoglucosan	•	30.4	Formaldehyde	•	2.4	OH
	Hydroxyacetaldehyd	e	15.4	Phenol	•	2.1	
	Acetic acid	• •	10.1	Propionic acid	•	2.0	
	Formic acid	•	9.1	Acetone	•	2.0	
	Acetaldehyde	•	8.5	Methylcyclopenten-2-o	ne	1.9	
	Furfurylalcohol	•	5.2	Methyl formiate	•	1.9	ноОн
	Catechol	•	5.0	Hydroquinone	•	1.9	
	Methylglyoxal	•	4.0	Acetol	•	1.7	0
	Ethanol	•	3.6	Angelica lactone	•	1.6	
	Cellobiosan	•	3.2	Syringaldehyde	•	1.5	H ₃ CO OCH ₃
	1,6- anhydroglucofuranos	se	3.1	Methanol	•	1.4	
Cellulose/hemicellulose derived Ignin derived							

GHENT

<u>Link biomass composition <> pyrolysis reactions</u> ullet

A versatile application platform

Fermentation (hybrid processing)

Orenda 2.5 MW turbine

Drop-in biofuels

►

How ? Typical reactor systems, tried and proven on large scale

1. Bubbling fluid bed

- Fluidized bed of heat carrier (e.g. sand) ۲
- Heat carrier ensures required heat transfer rates •
- Char separation using cyclones or hot vapor filtration ۲
- Reheating of heat carrier through gas or char combustion •
- Typical commercial example **Dynamotive** (defunct) ۲

Bubbling fluidised bed

Biomass

How ? Typical reactor systems, tried and proven on large scale

2. *Circulating* fluid bed

- Circulating fluidized bed of heat carrier (e.g. sand)
- Cyclone separates sand + char from vapor + gas
- Char burnt in a separate combustor
- Burning of char reheats the sand/heat carrier
- Typical commercial example: Ensyn and Metso-VTT

Biomass

How ? Typical reactor systems, tried and proven on large scale

2. Circulating fluid bed

GHENT

UNIVERSITY

Metso-VTT system: integrated into a fluidized bed combustor (coal fired power plant) with sand as common heat carrier

Joensuu, Finland

How ? Typical reactor systems, tried and proven on large scale

3. Rotating cone reactor

- Sand as heat carrier, mixed with biomass by means of centrifugal force •
- Char burnt in a combuster (air fluidised *bubbling* fluidised bed) \bullet
- No need for fluidisation gas: vapors are less diluted then FB systems •
- Technology commercialized by BTG (NL)
- Empyro plant (on-line 2015) in Hengelo: 120 tpd

How ? Typical reactor systems, tried and proven on large scale

4. Auger or screw conveyor reactor

- Needs hot sand to achieve the required heating rate (without sand = slow pyrolysis) •
- Mixing and transport controlled by screw •
- Single and twin screw configurations •
- More flexibility with respect to particle morphology •
- e.g. KIT-bioliq •

GENERAL CONCLUSIONS

- Fast pyrolysis is a technique to turn solid biomass into a liquid
- Application thereof in fuels, chemicals and energy production
- The key lies in the control of process conditions as well as feedstock
- Fast pyrolysis has become mature, with large-scale implemted technologies available

Questions?

Frederik Ronsse

Prof. dr. ir.

Research Group "<u>Thermochemical Conversion of B</u>iomass" DEPT. OF GREEN CHEMISTRY AND TECHNOLOGY

E Frederik.Ronsse@UGent.be

T +32 9 264 62 00

www.ugent.be

BIQ4 PRODUCTS Creating sustainable resources

for process industry

